A Non-Uniformly Sampled Markov Random Field Model for Map Reconstruction of Magnetoencephalogram Images

نویسندگان

  • Alan H. Gardiner
  • Brian D. Jeffs
چکیده

In this paper the maximum a posteriori (MAP) image reconstruction of magnetoencephalograms (MEG) is investigated. A mathematical framework for vector Markov random field models (MRF) suitable for MEG modeling of brain neuron current dipole activity is developed. A new method for simulating an MRF over a non-uniformly spaced sample grid while approximating an arbitrary desired covariance structure at these samples is also presented. Simulation results validate the effectiveness of this random sampled field model, and clinical MEG evoked response data is processed to demonstrate algorithm performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Markov Random Field Approach for Dense Photometric Stereo

We present a surprisingly simple system that allows for robust normal reconstruction by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint, in the presense of spurious noises caused by highlight, shadows and non-Lambertian reflections. Our system consists of a mirror sphere, a spotlight and a DV camera only. Using this, a dense set of unbiased but...

متن کامل

SPECT image reconstruction using compound models

SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine to determine the distribution of a radioactive isotope within a patient from tomographic views or projection data. These images are severely degraded due to the presence of noise and several physical factors like attenuation and scattering. In this paper we use, within the Bayesian framework, a Compound Gauss Markov ...

متن کامل

Image reconstruction with two-dimensional piecewise polynomial convolution

This paper describes two-dimensional, non-separable, piecewise polynomial convolution for image reconstruction. We investigate a two-parameter kernel with support [-2,2]x[-2,2] and constrained for smooth reconstruction. Performance reconstructing a sampled random Markov field is superior to the traditional onedimensional cubic convolution algorithm.

متن کامل

Detection and prediction of land use/ land cover changes using Markov chain model and Cellular Automata (CA-Markov), (Case study: Darab plain)

unprincipled changes in land use are major challenges for many countries and different regions of the world, which in turn have devastating effects on natural resources, Therefore, the study of land-use changes has a fundamental and important role for environmental studies. The purpose of this study is to detect and predicting of land use/ land cover (LULC) changes in Darab plain through the Ma...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998